The post How Bitcoin stays alive when banks and card networks go down appeared com. In 2019, Rodolfo Novak sent a Bitcoin transaction from Toronto to Michigan without internet or satellite. He used a ham radio, the 40-meter band, and the ionosphere as his relay. Nick Szabo called it “Bitcoin sent over national border without internet or satellite, just nature’s ionosphere.” The transaction was tiny, the setup finicky, and the use case borderline absurd. Yet, it proved something: the protocol doesn’t care what carries its packets. That experiment sits at one end of a decade-long stress test the Bitcoin community runs quietly in the background, a distributed R&D program testing whether the network can function when the usual infrastructure fails. Satellites broadcast blocks to dishes across continents. Mesh radios relay transactions across neighborhoods without the need for ISPs. Tor routes traffic around censors. Ham operators tap out hexadecimal over shortwave. These aren’t production systems. They’re fire drills for scenarios most payment networks treat as edge cases. The question driving it all: if the internet fragments, how fast can Bitcoin come back online? A node with an inexpensive dish and a Ku-band receiver can sync blocks and stay in consensus even if local ISPs go dark. The system is one-way and low-bandwidth, but it solves a specific problem: during regional blackouts or censorship, nodes need an independent source of truth for the ledger state. The satellite API extends this further. Anyone can uplink arbitrary data, including signed transactions, from ground stations for global broadcast. The bandwidth is terrible, but the independence is.